

O-Propargyl-puromycin

Acetate salt

Cat. No.	Amount
NU-931-05	0,5 mg (1 μmol)
NU-931-5	10 x 0,5 mg (10 μmol)

Structural formula of O-Propargyl-puromycin

For general laboratory use.

Shipping: shipped on gel packs

Storage Conditions: store at -20 °C

Short term exposure (up to 1 week cumulative) to ambient temperature possible.

Shelf Life: 12 months after date of delivery **Molecular Formula:** C₂₄H₂₉N₇O₅ (free amine) **Molecular Weight:** 495.53 g/mol (free amine)

Exact Mass: 495.22 g/mol (free amine)

CAS#: 1416561-90-4 **Purity:** ≥ 95 % (HPLC)

Form: solid

Color: colorless to slightly white

Solubility: DMSO, PBS (up to 50 mM tested) pH adjusted to 5.0 **Spectroscopic Properties:** λ_{max} 275 nm, ϵ 20.0 L mmol⁻¹ cm⁻¹

Applications:

Protein synthesis monitoring in cell culture and whole organisms^[1,2]

Description:

Liu et al.[1] reported a non-radioactive alternative to analyze newly synthesized proteins in cell culture and whole organisms that is based on O-Propargyl-puromycin, an alkyne analog of puromycin.

O-Propargyl-puromycin is cell-permeable and incorporates into the C-terminus of translating polypeptide chains thereby stopping translation.

The resulting truncated C-terminal alkyne labeled proteins can subsequently be detected via Cu(I)-catalyzed click chemistry that offers the choice to introduce a Biotin group (via Azides of Biotin) for subsequent purification tasks or a fluorescent group (via Azides of fluorescent dyes) for subsequent microscopic imaging.

In contrast to Azidohomoalanine (AHA) or Homopropargylgycine (HPG) based non-radioactive methionine analog-approaches, methionine free-medium is not required for O-Propargyl-purmoycin-based monitoring of nascent protein synthesis.

Presolski *et al.*^[4] and Hong *et al.*^[5] provide a general protocol for Cu(I)-catalyzed click chemistry reactions that may be used as a starting point for the set up and optimization of individual assays.

Related Products:

Copper (II)-Sulphate (CuSO₄), #CLK-MI004 Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA), #CLK-1010 Sodium Ascorbate (Na-Ascorbate), #CLK-MI005

Selected References:

[1] Liu et al. (2012) Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc. Natl. Acad. Sci. USA 109 (2):413.

[2] Signer *et al.* (2014) Haematopoietic stem cells require a highly regulated protein synthesis rate. *Nature* **509**:49.

[3] Grammel et al. (2013) Chemical reporters for biological discovery. Nat. Chem. Biol. **9 (8)**:475.

[4] Presolski et al. (2011) Copper-Catalyzed Azide-Alkyne Click Chemistry for Bioconjugation. Current Protocols in Chemical Biology **3**:153.

[5] Hong et al. (2011) Analysis and Optimization of Copper-Catalyzed Azide-Alkyne Cycloaddition for Bioconjugation. Angew. Chem. Int. Ed. 48:9879.